





# ADCAMAT PRESSURE OPERATED PUMP POPS DN 100

#### DESCRIPTION

The ADCAMAT POP (Pressure Operated Pump), fabricated in carbon steel (stainless steel on request), is recommended in the transfer of high temperature liquids such as condensate, oils and others, to a higher elevation or pressure.

Under certain conditions, it can drain a closed vessel under vacuum or pressure.

The pump can be operated by steam, compressed air or other gases, and can be used for lifting any kind of non-corrosive liquids.



#### **OPERATION**

Liquid flows by gravity into the pump through an inlet check valve lifting a float which, at the upper limit of its stroke, opens the supply valve, allowing steam or compressed air to enter the pump's body. Pressure in the pump builds up until it's just sufficient to overcome back pressure.

The pressurized liquid opens the outlet check valve and discharge begins. When the float reaches the minimum lower level, it closes the steam or compressed air supply valve and opens the vent, allowing the liquid to fill the pump again. As the amount of liquid discharged at each stroke is known, the total volume that flows during a given period of time can be calculated by counting the number of cycles during that period. For that purpose, a special counter is available which screws into a tapped connection on the top cover of the pump. This counter records the number of pumping strokes, thus enabling the pump to function as a reliable flow meter.

MAIN

FEATURES: No electric requirements.

OPTIONS: Duplex packaged design.

Stainless steel construction.

Level gauge. Stroke counter.

USE: To lift hot condensate or other liquids.

**AVAILABLE** 

MODELS: POPS - Carbon steel construction.

(Sandblasted, metalized and black painted).

SIZES: DN 100 x 100 (for smaller sizes see IS 9.101E).

CONNECTIONS: Flanged EN1092-1 PN16.

Female threaded ISO 7 Rp (threaded flanges).

Others on request.

INSTALLATION: Horizontal installation.

See IMI - Installation and maintenance

instructions.

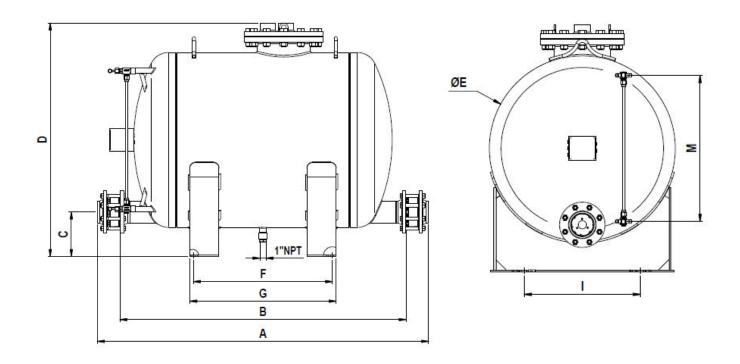
MOTIVE GAS: Steam, compressed air or other gases.

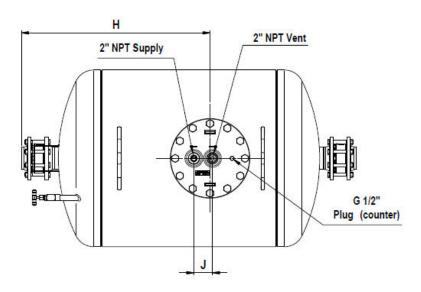
| LIMITING CONDITIONS      |           |  |  |  |
|--------------------------|-----------|--|--|--|
| Minimum density          | 0,80 kg/L |  |  |  |
| Maximum viscosity        | 5 °Engler |  |  |  |
| Maximum motive pressure  | 10 bar    |  |  |  |
| Minimum motive pressure  | 1 bar     |  |  |  |
| Pump discharge per cycle | 325 L     |  |  |  |

| BODY LIMITING CONDITIONS * |                       |                        |  |  |  |
|----------------------------|-----------------------|------------------------|--|--|--|
| POPS                       |                       |                        |  |  |  |
|                            | ALLOWABLE<br>PRESSURE | RELATED<br>TEMPERATURE |  |  |  |
|                            | 16 bar                | 50 °C                  |  |  |  |
| PN16                       | 14 bar                | 100 °C                 |  |  |  |
|                            | 13 bar                | 195 °C                 |  |  |  |
|                            | 12 bar                | 250 °C                 |  |  |  |
| ANSI                       | 16 bar                | 50 °C                  |  |  |  |
| 150 lb                     | 13 bar                | 195 °C                 |  |  |  |

Min. operating temp.: -10 °C; Design code: ASME VII.

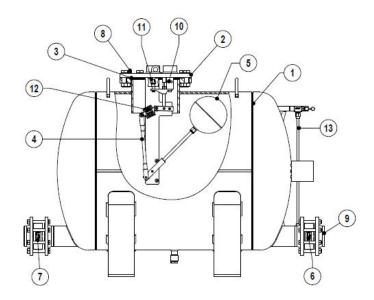
<sup>\*</sup> Rating according to EN 1092-1:2018.


| CE MARKING – GROUP 2<br>(PED – European Directive) |               |  |  |  |  |
|----------------------------------------------------|---------------|--|--|--|--|
| PN16 Category                                      |               |  |  |  |  |
| All sizes                                          | 4 (CE marked) |  |  |  |  |







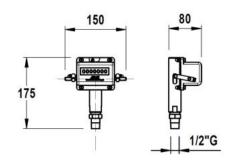


|                      | DIMENSIONS (mm) |      |      |     |      |     |     |     |     |     |    |     |     |      |
|----------------------|-----------------|------|------|-----|------|-----|-----|-----|-----|-----|----|-----|-----|------|
| SIZE<br>DN           |                 |      |      |     |      |     |     |     |     |     |    |     |     |      |
| 100 X 100<br>4" X 4" | 1705            | 1760 | 1473 | 229 | 1200 | 900 | 715 | 753 | 960 | 564 | 95 | 710 | 565 | 1028 |












|         | MATERIALS                         |                                                        |  |  |  |  |
|---------|-----------------------------------|--------------------------------------------------------|--|--|--|--|
| POS. Nº | DESIGNATION                       | POPS                                                   |  |  |  |  |
| 1       | Pump body                         | P265GH / 1.0425 ; P235GH / 1.0345 ;<br>S235JR / 1.0038 |  |  |  |  |
| 2       | Cover                             | GJS-400-15 / 0.7040                                    |  |  |  |  |
| 3       | * Cover gasket                    | Non asbestos                                           |  |  |  |  |
| 4       | Internal mechanism                | Stainless steel                                        |  |  |  |  |
| 5       | * Float                           | Stainless steel                                        |  |  |  |  |
| 6       | * RD40 Outlet check valve         | CF8M / 1.4408                                          |  |  |  |  |
| 7       | * RD40 Inlet check valve          | CF8M / 1.4408                                          |  |  |  |  |
| 8       | Bolts                             | Steel 8.8                                              |  |  |  |  |
| 9       | ** PN16 EN 1092-1 Flanges         | P250GH / 1.0460                                        |  |  |  |  |
| 10      | * Motive inlet valve / Seat assy. | Stainless steel                                        |  |  |  |  |
| 11      | * Exhaust valve / Seat assy.      | Stainless steel                                        |  |  |  |  |
| 12      | * Springs                         | INCONEL                                                |  |  |  |  |
| 13      | *** Level gauge cocks / Glass     | See catalog IS LGC 135.10                              |  |  |  |  |

<sup>\*</sup> Available spare parts.

# STROKE COUNTER

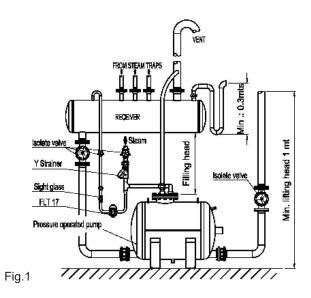
Available on request, it can be screwed directly into the top cover of the pump or above the pump, through a 1/2" size pipe for easier reading (max. 1 m).



<sup>\*\*</sup> Welding neck EN 1092-1:2018 flanges. Threaded flanges on request.

<sup>\*\*\*</sup> Optional.






# SIZING AND INSTALLATION

## SIZING OF THE SYSTEM

The discharge capacity of the pump is a function of:

- 1. Condensate load (kg/h).
- 2. The pressure of the operating medium (steam, compressed air or other gases).
- 3. The total lift or back pressure the pump will have to overcome. This includes the change in fluid level elevation after the pump (0.0981 bar/m of lift), plus pressure in the return piping, plus the pressure drop in bar caused by pipe friction, plus any other system component pressure drop the pump exhaust will have to overcome (barg).
- 4. Filling head available (300 mm is recommended).



## **INSTALLATION**

Fig.1 shows a typical installation example of an ADCAMAT POPS. For further details and instructions, please contact manufacturer.

#### **RECEIVER**

A receiver is recommended to temporarily hold the liquid and prevent any flooding of the equipment, while the pump is performing a pumping cycle. A length of pipe of large diameter can be used.

| SUGGESTED RECEIVER        |              |            |            |  |  |
|---------------------------|--------------|------------|------------|--|--|
| Pump size                 | DN 100 x 100 |            |            |  |  |
| Pipe size with 1 m lenght | 406 x 2000   | 640 x 1500 | 800 x 1500 |  |  |

Table 2

| CAPACITY CORRECTION FACTOR FOR GASES<br>OTHER THAN STEAM  |      |      |      |      |      |  |
|-----------------------------------------------------------|------|------|------|------|------|--|
| % Backpress. vs 10% 30% 50% 70% 90% Motive press. (BP/MP) |      |      |      |      |      |  |
| Correction factor                                         | 1,04 | 1,08 | 1,12 | 1,18 | 1,28 |  |

Table 3

| CAPACITY MULTIPLYING FACTORS<br>FOR OTHER FILLING HEADS |                             |  |  |  |  |  |  |
|---------------------------------------------------------|-----------------------------|--|--|--|--|--|--|
| Pump size                                               | Pump size Filling head (mm) |  |  |  |  |  |  |
| DN 150 300 600 900                                      |                             |  |  |  |  |  |  |
| DN 100 x 100                                            | 0,7 0,8 1 1,08              |  |  |  |  |  |  |
| Table 4                                                 |                             |  |  |  |  |  |  |







# FLOW RATE (kg/h) Installation with 300 mm filling head above the pump cover

| Motive pressure (bar) | Total lift<br>(bar) | DN 100 x 100 |
|-----------------------|---------------------|--------------|
| 1                     |                     | 13130        |
| 1,7                   |                     | 16850        |
| 3,5                   | 0,35                | 21900        |
| 5                     | 0,33                | 24830        |
| 7                     |                     | 26880        |
| 10                    |                     | 29800        |
| 1,7                   |                     | 16630        |
| 3,5                   |                     | 20400        |
| 5                     | 1                   | 23050        |
| 7                     |                     | 25100        |
| 10                    |                     | 29800        |
| 2,5                   |                     | 13210        |
| 3,5                   |                     | 15150        |
| 5                     | 1,5                 | 17280        |
| 7                     |                     | 19100        |
| 10                    |                     | 21410        |
| 3,5                   |                     | 11860        |
| 4                     |                     | 12300        |
| 5                     | 3                   | 12900        |
| 7                     |                     | 13740        |
| 10                    |                     | 14980        |
| 4,5                   | 4                   | 11700        |
| 5                     |                     | 11840        |
| 7                     |                     | 12710        |
| 10                    |                     | 13760        |

Table 5 (based on liquid specific gravity 0.9 - 1.0).

## Example:

Condensate load 8500 kg/h
Filling head 150 mm
Motive fluid Compressed air

Available pressure 7 bar

Vertical lift after pump 10 m

Return piping pressure 1,2 bar

Piping friction pressure drop Negligible

# **Correction for filling Head:**

With 150 mm filling head the correction factor from Table 4 is 0,7. The corrected capacity is: 13740 kg/h x 0,7 = 9618 kg/h.

# **Calculations:**

Total back pressure: 1,2 bar + (10 m x 0.0981) = 2.181 bar. Pump choice, assuming steam as motive fluid, at a pressure of 7 bar and a back pressure of 3 bar: the DN 100 pump has a capacity of 13740 kg/h, according to Table 5, so it is the one we should select.

# Correction for air as a motive fluid:

The % back pressure 2,181 bar / 7 bar = 31%The correction factor from table 3, is 1,08. The corrected capacity is  $9618 \text{ kg/h} \times 1,08 = 10387,44 \text{ kg/h}$ , and so, the DN 100 pump is still recommended.

