

WAFER-TYPE NON-RETURN VALVE RD40 DN 125 – DN 200

DESCRIPTION

The RD40 all stainless steel disc check valves have a compact design and are specially designed for use with steam and hot condensate.

MAIN FEATURES

Low pressure drop.

Simple and compact design.

Overall lengths according to DIN EN 558-1 (DIN 3202 part 3, series

K4).

OPTIONS: Various options of soft sealing:

EPDM (E), NBR (N), VITON (V), PTFE (T).

Inconel springs.

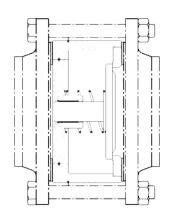
USE: Saturated steam, water and other gases (Group

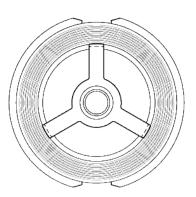
2) compatible with the construction.

AVAILABLE

MODELS: RD40 – stainless steel.

SIZES: DN 125 to DN 200.


CONNECTIONS: Sandwiched between flanges as per EN 1092 or

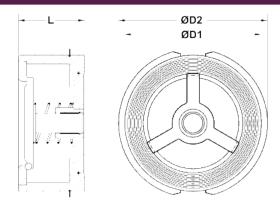

ASME.

INSTALLATION: Horizontal or vertical installation.

See IMI - Installation and maintenance

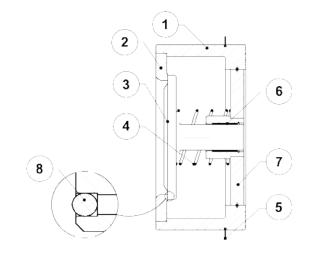
instructions.

RECOMMENDED LIMITS OF OPERATION WITH SOFT SEALS				
EPDM (E)	NBR (N)	VITON (V)	PTFE (T)	
130 °C	95 °C	180 °C	180 °C	


CE MARKING – GROUP 2 (PED – European Directive)		
PN 40	Category	
DN 125 to 200	2 (CE marked)	

BODY LIMITING CONDITIONS			
WAFER PN 40 *			
ALLOWABLE PRESSURE	RELATED TEMPERATURE		
40 bar	100 °C		
33,7 bar	200 °C		
31,8 bar	250 °C		
29,7 bar	300 °C		

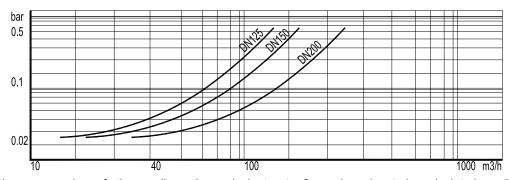
* According to EN 1092; Minimum operating temperature: - 10 °C.



DIMENSIONS							
SIZE	PN 10/16	PN	40	CLASS 150 CLASS 300		WEIGHT	
	D1	D1	D2 *	D1	D2 *	L	(kg)
DN 125	192	192	-	192	212	90	10
DN 150	218	-	226	218	247	106	14
DN 200	273	-	290	273	304	140	24

^{*} Centering ring required

MATERIALS				
POS.	DESIGNATION	MATERIAL		
1	Body	S355J2G3 / 1.0570		
2	Seat	AISI 316 / 1.4401		
3	* Disc	AISI 316 / 1.4401		
4	* Spring	AISI 302 / 1.4300		
5	Centering ring	AISI 304 / 1.4301		
6	Bearing	Steel Fe Zn		
7	Star	S355J2G3 / 1.0570		
8	* Soft seal	EPDM; NBR; VITON; PTFE		



* Available spare parts.

MINIMUM OPENING PRESSURES WITH STANDARD SPRING (mbar)						
SIZE	D.P.	↑	D.P.	\rightarrow	D.P.	1
DN 125	37		22		7	
DN 150	40		25		10	
DN 200	46		28		10	

 \rightarrow : Flow direction.

Pressure drop, horizontal flow, standard spring (water - 20°)

To determine the pressure drop of other mediums the equivalent water flow volume has to be calculated:

 $V_W = \sqrt{\frac{Q}{1000}} \times V$

 $Vw = Equivalent \ water \ flow \ volume \ in \ m^3/h; \ Q = Density \ in \ kg/m^3; \ V = Flow \ volume \ in \ m^3/h$